e1-1977 CONN - RN 2RO - -2

i TiTLE: COMPARATIVE PERFORMANCE EVALUATION OF TWO SUPERCOMPUTERS:
CDC CYBER-205 AND CRI CRAY-1
=z =5

— T2

AUTHOR(S): 1Ingrid Y. Bucher

T MASTER

SUBMITTED TO: Computer Measurement Group XII meeting, New Orleans,
LA, December 1-4, 1981

By scceptance of this article, the publisher recognizes 1na the
U.5. Government retains 8 nonenciveive, rovaity-free higense
10 publish Or reproguce the pubinhed form of thi contnby:
tion, or 10 sllow Brhen 10 60 10, fur U.S. Goverrvmant pur-
poses.

The Lov Alamos Scientific Laboretory mauetts that the pud:
lisher dentify this priicle s work pertormed unger the sui:
pices of the U.S. Depsntrrunt of Energy.

.g
c
|
)
=
©
&
[
o
>
=
7]
Ao
o
Z
c
o

= LOS ALAMOS SCIENTIFIC LABORATORY

Pcst Office 3ox 1863 Los Alamos, New Mexico B7545
An Arirmative Action/Equal Opportunity Employer

:":‘ Ne, 8 M) UNITED STATES
L. No. 2029 OEPARTMENT DP ENEARGY
1Y CONTNACY W-2000:ENG. 36

............ Ae wie RAMBICNT IR INLIBUITED

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

COMPARATIVE PERFORMANCE EVALUATION OF TWO SUPERCOMPUTERS:
CDC Cyber-205 and CRI Cray-1

by

Ingrid Y. Bucher and James W. Moore

ABSTRACT
This report compares the performance of
Control Data Corporation's newest
supercomputer, the Cyber-205, with the Cray
Research, Inc. Cray-1, currently the
Laboratory's largest majinframe. - The

rationale of our benchmarking effort 1is
discussed. Results are presented of tests to
determine the speed of basic arithmetic
operations, of runs using our standard
benchmark programs, and of runs using three
codes that have been optimized for both
machines: a linear system solver, a wmndel
hydrodynamics code, and parts of a plasma
simulation code. It 1is concluded that the
speed of the Cyber-205 for memory-to-memory
operatiors on vectors stored in consecutive
locstions is considerably faster than that of
the Cray-1. However, the overall performance
of the machine is not quite equal to that of
Lhe Cray for tasks of interest to the
Laboratory as represented by our benchmark
set,

1. INTRODUCTION

To satisfy its scientific computing needs, Los Alamos National
Laboratory has traditicnally required the largest and fastest
computers commercially produced. We therefore have an ongoing
benchmarking effort to obtain performance data on new machines as
they become avajilable. This report compares the performance of
Control Data Corporation's newest supercomputer, the Cyber-205,
with the Cray Fesearch, Inc. Cray-1l, currently the Laboratory's
largest mainframe.

DIBOLANMARR

VoAl A e) mar s ool ol awl Mene Sl h e ey ot s Lanbad Rigtes C o aineernb
It

i}
» RN LI B TR R R U T IS TR T
Y EMUTENRFET L R NU RILKL S RLAT Y RATU Y [PEN TIEEVE = i L T R lmm
C)&% DETRIAUTION OF THIS NOCOMENT I8 AL

The rationale of our test design is discussed in the light of
how new supercomputers are put to work at the Laboratory. We
then describe very briefly basic hardware features of the two
machines. Finally, along with a description of our test
progrems, timing results for both machines are presented and
discussed.

2. DESIGN OF TESTS

Use cf new supercomputers at the Laboratory typically begins
with the transfer of FORTRAN codes already running on other
computers. Extensive revisions will be required if the
architecture of the new machine differs significantly from the
old. Initial modifications to the codes are 1limited to those
necessary to get useful work done on the new machine. Once codges
are running, we optimize to get higher performance.
Optimizations range from minor changes in structure or syntax
(to help the compiler) to total redesign of the program,
including the use of new and different algorithms.

Our benchmarking effort is aimed at each stage of code
implementation on the new machine. 1Ideally we would like to get
performance estimates for

(a) codes with only minimal modifications to get them running
on the new equipment,

(b) codes that have been optimized for the new machine with a
reasonable investment of programming time, and

(c) optimul performance.

Due to obvious limitations, we make 1little efforL to use new
algorithms in benchmarking but explore other possibilities in
whatever detail time allows.

The Computing Division maintains a set of portable benchmark
programs that represent characteristic tasks that a new large
computer would be required to run at the Laboratory. We also
maintain a data bese containing results of past runs of these
programs on a variety of computers [1]. The programs are coded
in ANS1 FORTRAN for portability, and we are typically able to run
them with little or no change. Runtimes will be indicative of
the potentia) initial usefulness of the new machine.

I1f time permits, we optimize some of the benchmark programs
for the machines to be tested. For the comparison of the
Cyber-205 to the Cray-1 we selected three programs for
optimization: a linear system solver based on the LINPACK system
[2); & model hydrodynamics code, SIMPLE, that solves the
equations of Lagrangian flow and the heat diffusion equation by
finite difference methods {3]); and parts of a partinle-in-cell

plasma simulation code [4]. For the Cyber-205, optimnizations
ranged from inserting explicit vector syntax into the FORTRAN
code, inserting "Q8" calls that compile into specific assembly
language instructions, to coding sections in META (the Cyber-205
assembly language). Cray-1 optimizations included restructuring
FORTRAN code and writing sections in CAL, the Cray assembly
language. The three codes were optimized at different levels.
For the 1linear system solver high gains in speed could be
achieved with minimal effort for the Cyber-205. For the
hydrodynamics program, we forced the CDC compiler to vectorize
major portions of the FORTRAN code by explicit vector syntax and
Q8 calls; basic algorithms were left unchanged. For the plasma
simulation code we carried optimization to the ultimate
achievable for both machines, coding major sections in assembly
language as needed.

To verify advertised performance, we wrote a set of programs
to measure the speed of repetitive arithmetic operations.

The Cyber-205 is a virtual memory machine. We made every
effort to suppress this feature for two reasons:

1. we were concerned with the best performance of the machine,
and

2. our major codes would typically remain memory resident and
handle their own input/output.

Our tests used only b64-bit arithmetic because 32-bit arithmetic
is too short for most calculations of interest to us.

All of our development work was done on the Cyber-203 rather
than on the Cyber-205. The main difference between the two
machines is the new, fastei vector processor of the Cyber-205.
The Cyber-293 was accessed remctely through (ybernet, which
significantly reduced the development time.

3. CHARACTERISTICS OF CYBER-205 AND CRAY-1 HARDWARE

The Cyber-205 and the Cray-1 have many features in common.
Both contain pipelined vector-arithmetic processours capable of
performing operations on arrays at very high speeds. In
addition, each has a s8calar processor subdivided into several
functional units capable of performing a variety of operations in
parallel with each other and with the vector pipelines.

The Cray-1 vector processor is subdivided inio multiple units
permitting wmultiple results each cycle. The Cyber-205 can have
one, two, or four vector pipelines, cach capatle of producing one
result each cycle, The cycle times are 12.5 ns for the Cray-1
and 20 ns for the Cyber-205.

Py

The access to memory by the vector units is the characteristic
difference between the two machines. The Cyber-205 vector
instructions reference memory directly. The Cray-1 has 8 vector
registers, each 64 words long, usually making it unnecessary to
store intermediate results in memory. Ease of access to the
vector registers ccmbined with concurrent execution of vector
operations accounts for the high speed of the Cray-1 when each
operand does not have to be fetched from memory or each result
stored. The Cray-1 processes long vectors in sections of length
41, the Cyber-205 in sections of up to 65,536. If the Cyber-205
is to achieve peak result rates, the vectors must be contiguous
in memory. For the Cray-1, vectors must have a constant stride
(distance between memory locations), but the stride need not be
1. For both machines, data stored at irregular locations in
memory must be "gathered," a process that slows down operations
of both machines. The results may then have to be "scattered"
back into memory. The Cyber-205 has vector instructions to
perform gathers and scatters: '"transmit indexed 1list" and
"transmit list indexed," respectively [5]). The Cray-1 performs
gathers and scatters in scalar mode only.

The Cyber-205 tests were run on the first production machine,
Serial 502, which was equipped with two vector pipes.

4. DESCRIPTION Of TEST PROGRAMS AND TIMING RESULTS

4,1 Speed of Repetitive Arithmetic Operations

The set of programs for this test measures the speed of 64-bit
floating point operations as a function of vector length in both
vector and scalar modes. The unit of measurement 1s MFLOPS,
millions of floating point operdtions per second. Typically, one
million operations were timed, irrespective of vector length.

4.1.1 Vector Operations for Vectors Stored in Consecutjve Locations

Timing results of a program in which vector operations for the
Cyber-205 were specified in vector syntax are given in Table 1.
The corresponding ANSI FORTRAN program generated identical
timings. Results obtained by running the ANS1 FORTRAN version on
the Cray-1 are presented ir Table II.

It is evident that the vector unit of the Cyber-205 is indced
as fast as advertised. With two vector pipelines, it not only
exceeds the speed of the Cray-1 for long vectors by a factor of
approximately 3, but it is about twice as fast as the Cray-1 for
vector lengths of 100, at least for memory-to-memory operations
in a FORTRAN context,

For the Cyber-205, the average time T required to perform a
vector operation on a vector of length N < 65,537 is given by

T(Cyber) = TSTART_VU + N*T_EL (1)

where TSTART VU is the time required to start up the vector unit
and T_EL 1is the interval between successive result elements
emerging from it. For the vector add, T is plotted as a function
of the vector length N in Fig. 1 along with results obtained for
the Cray-1. The linear relationship of Eq. (1) 1is evident.
Table 111 presents values for TSTART_VU and T_EL derived from the
measured data for the Cyber-205 vector unit with two vector
pipes.

For the Cray-1, the average time T to process a vector of
length N is a more complicated relationship than Eq. (1) because
vectors of length N > 64 are "stripmined" in sections of length
64. Thic is evident from Fig. 1 by the steep rise in processing
time T each time the vector length exceeds an integer multiple of
64. For N equal to multiples of 64, T is a linear function of N
and can be represented by

T(CRAY) = TSTART_OUT + N*(TSTART_STR1P/64 + T_EL) (2)

where TSTART OUT is the startup time for the outer loop,
TSTART _STRIP is the startup time that could not be overlapped
with the vector operation for each strip of 64, and T EL is the
time required to process one result element. 1In Table IV values
Yar TSTART_OUT, TSTART STRIP, and T_EL are listed for the Cray-1
and the CFT compiler, Version 1.09. For the operations
programmed, requiring one memory reference per vector operand,
T_El was determined by the speed with which the Cray-1 can access
its memory, namely, in the absence of bank conflicts one load or
store operation per 12.5-ns clock cycle. There are two
exceptions: for the operations V = V+8*V and V = V#*V+V, the
compiler generated less than optimal code with T _EL of 50 and
62.5 ns instead of 37.5 and 50 ns, respectively. TSTART OUT and
TSTART_STRIP «re compiler dependent. The minimum value of
TSTART_STRIP is determined by startup times of vector memory
reference and arithmetic operations and is close to the value
measured. However, inspection of the compiler-generated assembly
code indicates that the value of TSTART OUT, the startup time for
the outer loop, cculd have been reduced by better compiler
optimization.

In comparing the Cyber-205 with the Cray-1 for arithmetic
vector operations with vectors stored i1in consecutive memory
locations, results indicate that startup times are comparable but
the time required to process an element is considerably less for
the Cyber than for the Cray in memory-to-memory operations due to
faster memory access.

4.1.2 Vector Operations for Vectors Stored With a Constant Stride

Arithmetic on vectors stored not in consecu*tive memory
locatioris but with a constant stride is more complicated for the

Cyber-205 [5]) than for the Cray-1l. Basically there are two
options:

1. Perform the arithmetic on all numbers fetched from
contiguous locations; then store selected results under
control of a bit vector. This option is optimal for small
strides. For optimal speed the process has to be roded
with Q8 calls that produce inline code, which is
cumbersome. For this option, speeds were measured that are
consistent with those obtained by dividing the results of
Table I by the stride.

2. Do a periodic gather followed by the arithmetic operation
and a subsequent periodic scatter. Both periodic gather
and scatter are vector operations on the Cyber-205. This
option yields the fastest results for large strides.

Data obtained from a version of the test program containing Q8
calls for the periodic gather and scatter operations combined
with vector syntax for the arithmetic are given in Table V. The
compiler generated similar ccde for the corresponding ANSI
FORTRAN version. The results for the ANSI FORTRAN version run on
the Cray-1 are given in Table VI. Clearly, for nonconsecutive
vectors the Cray-1 is faster than the Cyber-205 by a factor of
more than 2 for nearly all operations and vector lengths.

The results for the average time T required to process vectors
containing N elements are plotted for the addition of a scalar to
a vector in Fig. 2 for both the Cyber-205 and the Cray-1.
Relations similar to Eqs. (1) &and (2) seem to hold for both
machines, respectively, but with higher times T_EL for the
Cyber-205 and higher startup times for both machines. For the
Cyber-205 an analysis of the data indicates that 29 ns have to be
added to T_EL for each gather of an operanr and 25 ns for each
scatter of a result element,. Startup times for gather and
scatter operations are partially overlapped with other cperations
and could not be determined accurately from the data; they are
between 1000 and 2000 ns. Surprisingly enough, startup times for
the Cray-1 are somewhat higher than for vectors stored 1in
consecutive locations also. This 1s due entirely to poor
compiler optimization, which we believe could be improved.

In comparing both machines, it is evident that both startup
times and times required per vector element are considerably
higher for the C(Cyber-205 than for the Cray-1 when vector
operations 1involve elements stored in memory in a periodic
pattern but not in consecutive locations.

4.1.3 Random Gather and Scatter Operations

This section discusses speeds of arithmetic operations for
which operands or results or both are stored at irregular
locations in memory. For our tests these locations were

specified by an index to arrays of the form
INDEX = J(1) + K

where J is an integer array properly initialized (for example, by
a random number generator), 1 is the 1loop c¢ount, and K an
arbitrary integer constant.

Results of a program that specified random gather and scatter
operations by Q8 calls and arithmetic operations by explicit
vector syntax are given in Table VII. The CDC compiler generated
erroneous code from the corresponding ANSI FORTRAN version of the
program. The fact that an index had to be computed and operands
picked from or results stored into locations designated by this
index was completely ignored. Picking operands from consecutive
locations resulted, not surprisingly, in much higher speeds for
the erroneous code than for the correct one. Results obtained by
rug?ing the ANSI FORTRAN version on the Cray-l1 are presented in
Table VIII.

Analysis of the data for the Cyber-205 indicates that each
random gather or scatter operation requires an additional startup
time of approximately 200C ns for the vector unit. 1In addition,
an average time T EL = 36 ns is needed to gather each operand
element and T_EL = 35 ns to scatter a result element.

Random gathers and scatters on the Cray-l pnroceed at much
lower speed because, contrary to the Cyber-205, all operations
are performed in the scalar unit.

It has to be pointed out that for some important applications
vector instructions cannot te used for gather and scatter
operation- because they would lead to incorrert results. Rates
for scalar random gathers and scatters on the Cyber-205 are about
10 to 20% lower than those for the Cray-1l.

4,1.4 Scalar Arithmetic Operations

The speeds at which the scalar unit produces results for
repetitive operations were measured by the ANSI FORTRAN version
of the program used for measuring vector speeds with the
vectorization option off for the compilers. A set of results
obtained for the Cyber-203, which has an identical scalar unit as
the Cyber-205, and feor the Cray-1 are listed in Table IX. The
results were strongly dependent on the compiler version and
optimization level used in compiling the code.

For the nonoptimized coumpilations, rates on the Cray-1 are
higher than those on the Cyber-205 by a factor that equals the

ratio of the respective cycle times within a few percent. For
compilations with scalar-code optimization, thc Cyber is 10% to
30% faster than the Cray. Inspection of the assembly code

generated by the compilers provides the explanation of the

results. The code produced by the Cray CFT compiler could easily
be optimized by hand to yileld an increase in speed by a factor of
2 or better for most operations. The code produced by the CDC
BENCHF1N compiler was highly optimized and could not be speeded
up significantly by hand optimization without extensive loop
unrolling. The results for optimized code, therefore, reflect
more the higher sophistication of the BENCHFTN compiler to
optimize scalar 1loops as c~ompared to the CFT compiler than
properties of the hardware. It is noteworthy that the ratios of
runtimes for optimized scalar compilations of the Los Alamos
benchmark programs are not as favorable for the BENCHFTN compiler
(gee Sec. 4.2) as the timings of repetitive operations described
above.

4.1.5 Subroutine Calls

. Times required to call & subroutine were measured. For the
Cyber-205, times per call ranged from 500 to 16,000 ns, depending
on compiler optimization and type of subroutine. The Cray-1

subroutine calls take 720 ns plus 60 ns for each parameter
passed. These numbers do not include time losses due to possible
less efficient code optimization.

4.2 Results From The Los Alamos Standard Benchmark Programs

Table X contains, slong with a brief description of most of
the Los Alamos benchmark programs, the CPU times required to run
the codes on the Cyber-205 and the Cray-1. The programs were
compiled for machines with the vectorization option turned both
on and off. Scalar optimization was on in all cases. Timings of
scalar versions for the Cyber were obrained from running the
codes on the Cyber-203, which has a scalar unit identical to that
of the Cyber-205. However, there may be some differences in the
capabilities of the respective BENCHFTN compilers to optimize
scalar code. Program 11 was not run because of problems with the
compiler. Ratios of CPU times required to run the codes on each
machine are presented in Fig. 3 for the vectorized versions of
the code and in Fig. 4 for the nonvectorized (scalar) versions.

With the exception of Programs 1 and 18, running the codes in
vector mode on the Cray-1 required less CPU time (50 to 90%) than
on the Cyber-205. Program 1 tests the speed of integer
arithmetic, which is traditionally fast on Control Data machines.
Program 18 performs simple vector operations on long contiguous
vectors, and is the only unmodified program that showed the
strength of the Cyber-205.

Except for Program 18, the compiler did not automatically
vectorize the programs well for the Cyber-205, as can be seen
from the ratios of runtimes for the vectorized and nonvectorized
versions, Hand vectorization of Programs 15, 16, and 22 wus
possible by modifying one line of code (see also Sec. 4.3,
"Results of the Linear System Solver Test"). For Program 16,

this reduced the runtime from 62.9 to 12.2 s, Program 4A's
execution time was reduced from 8.7 to 1.3 s by substituting the
Control Data FFT Library routine written by Dennis Kuba [7] for
the routine contained in our benchmark.

The ratios of runtimes for the nonvectorized versions as
represented in Fig. 4 give an indication of the performance ratio
of both machines for scalar codes using the compilers available
at present. The average ratio (excluding Program 1) is 0.69,
about 10% higher than one would predict considering the ratios of
cycle times only. It is interesting, however, to note that the
CDC 7600, using the FTN compiler (with opt=2), outruns the
Cyber-205 in scalar mode on all codes except the linear system
solvers [1] in spite of its higher cycle time of 27 ns and less
elaborate archicecture. This indicates that there is potential
for improvements in both the BENCHFTN and CFT compilers.

Results of the benchmark program tests indicate that most
codes in our workload would run more slowly on the Cyber-205 than
on the Cray-1 without at least some hand optimization.

4,3 Results from The Linear System Solver Test

The linear system solver test used several variations of
Program 22, which contains 450 lines of FORTRAN, including
subroutines, and is based on the LINPACK system [2]. It makes
calls to a set of standard basic linear algebra subroutines, the
BLAS. The algorithm used is Gaussian elimination with partial
pivots.

From measurements of where the time was spent in the code, it
became clear that any significant speed increase would have to
come from improvements in SAXPY, one of the BLAS. SAXPY performs
multiplication of a scalar by a vector and the addition of the
result to another vector. SAXPY can be executed on the Cyber-205
as a single vector instruction (a linked triad). The program
uses FORTRAN versions of the BLAS, so the aim was to encourage
the compiler to compile the linked triad. In the original
version, the CDC compiler compiled SAXPY as two gathers, a linked
triad, and a ecatter. This happened because SAXI'Y was written as
a general routine to process either rows or columns, whereas in
the LINPACK solver only columns are used. This is an ideal
method for the Cyber-205 because it has to process contiguous
vectors only. There were no significant differences between the
versions for the Cray-1 with contiguous or apparent (to the
compiler) noncontiguous vectors.

Significant differences were measured with SAXPY 1inline as
opposed to a subroutine. The twc:. versions of interest are

1. LSS2 - SAXPY is vectorized with contiguous vectors, and
2, LSS5 - one call to SAXPY is replaced by inline code.

10

The call replaced in LSS5 accounts for nearly all the CPU time
attributable to SAXPY. It is clear from this result that
subroutine linkage is costly on the Cyber-205 and that small
heavily-used subroutines should be replaced by inline code,
preferably by the compiler. This is also true for the Cray-1 but
to a lesser degree. Time loss2s due to subroutine calls for
SAXPY were calculated as 4 us per call for the Cyber-205 and 3 us
per call for the Cray-l1l. Table X1 compares CPU times required
for 300 solutions of an NxN system using LSS2 and LSS5 for the
Cyber-205 and the Cray-1l.

Table XI1 compares CPU times required for 300 solutions of an
NxN 3ystem using library routines available for both machines.
The Cyber-205 routine is a FORTRAN implementatinon of LINPACK,
which might be improved in the future as more experience is
gained on the machine. The Cray-1 routine is a highly optimized
and vectorized version, written in assembly language.

It can be seen that even though the Cyber-205 is substantially
faster than the Cray-1 for the FORTRAN version of this test, hand
optimization and recoding brings the Cray-1 up to Cyber speeds
for all but very large systems.

4.4 Results from the Simple Test

SIMPLE is a mudel hydrodynamics code that solves the two-
dimensional partial differential equatious of Lagrangian
compressible flow and the heat conduction equation by finite
difference methods [3]. 1t contains 1900 lines of FORTRAN. The
version used for the test vectorized well automatically on the
Cray-1 except for the equation-of-state routines, but did not
vectorize well on the Cyber-205. The equation-of-state routines
contain table 1lookups &nd interpolations and can be vectorized
with some effort. We did not chose to do so because we felt the
code was more representative of actual Laboratory codes in the
form used.

Control Data Corporation did vectorize the equation-of-state
routines for the Cyber-205, and achieved a speedup of
approximately two over the nonvectorized versions but required
considerably more memory. Similar speedups by & factor of about
2 are reported for the Cray-1 [8]. The timing for the Cyber-205
vectorized versions were roughly equal to those for the Cray-1
version with scalar equation-of-state routines. In our version,
we estimate that about 50% of the execution time is spent in the
equation-of-state subroutines. However, a very small fraction of
the computational work is performed in them because the rest of
the code is vectorized.

The versions of interest for the Cyber-205 are

1. SIMP - the original version, and

11

2. SIMP4 - some vector syntax and Q8 calls added.

SIMP is actually a slight modification of the Cray-1 vers.iun
because the compiler generated incorrect code that caused the
program to abort. Because the Cyber-205 BENCHFTN compiler did
not vectorize as well as the Cray CFT compiler, there were
numerous places where either Q8 calls or vector syntax were used
to achieve more vectorization in SIMP4. This optimization effort
required 1.5 man-months. Part of this time was due to
difficulties with the compilers (there were several) and the
Cyber utilities. Since all the development work was done on the
Cyber-203, we are not sure that we have an optimally efficient
code for the Cyber-205.

Several approaches to vectorization cculd be explored for the
Cyber-205. The approach we tried vectorizes the column
computations (on the Cray-1 row computations vectorize also). On
the Cyber-205, the row computations may compile as gathers and
scatters with vector computations in between. This is at least
seven times slower than arithmetic on contiguous vectors.
Another approach would be to vectorize matrix operations over the
entire mesh wherever possible into one single .ector operation
and subsequently clean up the boundaries. There is vector syntax
in Cyber-205 FORTRAN that would make this task easier [7]. This
approach would lead to additional speedup on the Cyber-205
because of the longer vector lengths, but the boundary might slow
down. It is, however, impossible to vectorize some areas of the
code in this way because of dependencies within the mesh.
Different computational algorithms are needed to avoid row
computations, which are slow or the Cyber-205.

Table X111 presents the execution times for SIMP and SIMP4 for
100 time steps on an NxN mesh. The actual mesh is (N+2)x(N+2)
because of the boundary around it. The ratio of speeds of the
two machines appears almost linear with mesh size. 1If it wer«
iinear, the crossover point would be on about a 350x350 mesh,
which would require 2.7 million words of storage. Run times for
this size problem would be about 330 £ for 100 time steps. Since
the number of time steps for real problems of this type is
typically two to three orders of magnitude higher and real codes
are much more complex, it seems infeasible to run problems of
this size on present machines, including the Cyber-205.

4.5 Results From The Optimized Plasma Simulatior Code

Benchmark Program 11 contains the "particle pushers" from a
particle-in-cell (PIC) plasma code that simulates the motion of
charged particles in an electromagnetic field [4]. Although the
particle-push subroutines (PARMVE, PARMOV, and PARMVR) constitute
only a small fraction of the code, about 90% of the computation
time is spent in them. Generally, particle pushers are not fully
vectorizable. Considerable effort was spent to optimize the code

12

for each machine. We believe that very little additional speedup
~ of these routines can be achieved for either machine and that
this test demonstrates the maximum performance that can be
achieved for this type of code.

For the Cyber-205, PARMVE, PARMOV, and FARMVR were completely
rewritten with vector syntax except for the subroutine CHARGE,
which was written in assembly language (META). PARMVE calls
CHARGE once; PARMOV and PARMVR each call it four times. CHARGE
contains the major part of the nonvectorizable computation; it is
entirely scalar. CHARGE executed for approximately 0.7 wus per
particle; its FORTRAN version required about 2 us per particle.
Gather instructions causec the majior slowdown in the rest of the
code. There are no FORTRAN DO loops in the code. Within the
three routines there are statements that can be replaced with
direct calls to Jlinked triads controlled by a bit wvector.
Because of limited Cyber-205 machine time and the instability of
the Cyber-205 compiler, these modifications were not incorporated
into the code. We believe these modifications would have only
minor etfects on the execution time. Cyber-205 timings for the
PIC kernels are listed in Table XIV for several vector lengths.

Cray-1 timings ar:® essentially independent of vector length.
The versions of interest are

@ CAL - a best effort Cray Assembly Language (CAL) version,
e Vector FORTRAN - a best effort vectorization in FORTRAN, aand
e Scalar FORTRAN - the original version.

Cray=-1 timings io: the PIC kernels are given in Tabie XV.

The most meaningful comparison for this test c¢an be made
between the CAL version and the Cyber-205 version with vector
length 2560, which gives the best pcssible timings in both cases.
Table XVI shows the corresponding speed ratios.

Although the Cray-1 clearly outpaces the Cyber-205 on this
highly optimized code, it is important to note that optimization
for the Cray was achieved at high cost. Approximately 5 man-
months were required for the Cray-1 version compared to 1.5 man-
months for the Cyber-205 optimization, primarily because most of
the Cyber-205 version was written in FORTRAN (with vector
syntax). About 300 lines of META had to be written compared to
2500 1lines of CAlL. This 1s an important consideration for
programmers who wish to achieve optimal performance for their
codes.

13

5. CONCLUSIONS

The Cyber-205 is a very high-speed computing machine. It
works especially well on problems that have long contiguous
vectors. The raw speed of its vector box is considerably higher
thar that of the Cray-1. However, major drawbacks compared to
the Cray-1 are its inability to access noncontiguous vectors
efficiently and the longer cycle time of its scalar unit.

The Cyber-205 compiler needs additional work on automatic
vectorization. The vector syntax is cumbersome and unique to
this machine. It is possible, nowever, to use vector syntax and
gain maximum performance at lower programming cost than with
assembly language, the only option on the Cray-l. Although the
Cray compiler is better at vectorization, the Cyber-205 compiler
optimizes scalar code more effectively, nct as well, however, as
the FTN compiler marketed by Control Data Corporation for the CDC
7600.

Subroutine calls are expensive on both high-speed computers,
which runs against current trends toward better modularity and
structure. It would be highly desirable, therc¢fore, to have
compiler directives that place subroutines inline.

Our tests point up the problems with using raw maximum-result
rates for high-speed vector computers as an indication of how
real codes will perform. Many of our optimized codes ran 10
times slower than peak MFLOP rates for 64-bit arithmetic on the
Cyber-205. Since portions of some codes cannot be vectorized,
the speed of the scalar unit 1is an important tactor for the
overall performance of a machine. There is no substitute for
actual experimentation and measurement.

Based on our test results, we conclude that in spite of the
high speed of the Cyber-205 vector unit for contiguous vectors,
the Cyber-205 does not appear to operate as rapidly as the Cray-1l
on most codes that are representative of the Los Alamos Class \'1
Computer workload.

ACKNOWLEDGMENTS

The authors appreciate the assistance ol many persons at tho
Control Data Benchmark Facility, Minneapolis, Minnesota. Special
thanks to Denniu Kuba, George Vandegrift, and Robert Ayars of
Control Data Corporation for their support in getting programs
run on the Cyber-205. The efforts of Lawrence Rudsinski in
optimizing the plasma code for the Cybher-205 were invaluable.

14

REFERENCES

1.

A, H. Hayes anf 1. Y. Bucher, "Los Alamos Scientific
Laboratory Compu..r Benchmark Performance 1979," Los Alamos
Scientific Laboratory report LA-8689-MS (February 1981).

J. J. Dongarra, C. B. Moler, J. R. Bunch, G. ¥. Stewart,
"LINPACK Users Gnide," SIAM (1979).

W. P. Crowley, C. P. Hendrickson, T. E. Rudy, "The SIMPLE

~ Code," Lawrence Livermore National Laboratory report

UCID-17715 (February 1, 1978).
D. W. Forslund, C. W. Nielsen, and L. Rudsinski, "Vectorized
PIC Simulation Codes on the Cray," Scientific Information

Exchange Meeting, Lawrence Livermore National Laboratory,
(September 12-13, 1979).

Control Data Corporation, Cyber 200 Model 205 Reference
Manual , Publication number 60256020, (September 1980)
Control Data Corporation, CDC Cyber 200 Fortran Langua
Reference Manual, Publication numEer 60457040, (August 1 35

P. N. Swartztrauber, National Center for Atmospheric
Research, personal communication (June 1980).

D. Kuba, Control Data Corporation, personal communication
(February 1981).

T. E. Rudy, Lawrence Livermcre National Laboratory, personal
communication (April 1981).

AVERAGE PROCESSING TIME T FOR
VECTOR OF LENGTH N

10

V=V+S8S
VECTORS STORED COATIGUOUSLY

/\'.-".. -:-
(,(’:!"

(us)

0 A] 1 L L

0 S0 100 150 200 250

VECTOR LENGTH N

Fir. 1. Averaee Proevesciine Time lor Ve:tor ol Length N g5 g Fanetion of Vector Leagth N,

AVERAGFE FROCESSING TIME T FOR
VECTOR O(F I).ENGTH N
M3

L
0 P 100 150 200 250

VECTOR LENGTH N

Vi--. " Neer wzos Prosocciins: lime b e ber ol Lt 3 o o0 Jame i of Vector Leneth X

(1)

Ratio of CPU Times

T(CRAY—1)/T(CYBER-205)

14 15 18 21 22

© ANNNNN

1 4

o
>

Los Alamos Benchmark Code Number

Pl 3. Esbio am OFF Times TCrav=1) FT(Ceber=0%) Jor Los Aloumos
Fenchmar! Procroam: with Cempiler Veclorizzadion (tn,

NN\
NN
ANNNNNNY
NN\
N\\\\\N\
S

NN\

-

N - =]

(S02-¥agAD)L/(1—AVYD)L
sawil], NdD Jo oney

Los Alamos Benchmark Code Number

mays

for Los A

)

Y/ T(vh
Compilaer Veot:

T(Cr e
with

ol P Fipees

. Ia

.

wwizal ion

Tmarl Progeromes

13

Operation
V=V+S
V=SV
V=V+V
V=v:y
V=V+5ZV
V=V:VsS
V=V=v+V
V=S*V+§>V
V=Vavayay

vector

Y =
= scalar

S

q0_

8.93
9.26
8.93
9.26
11.90
11.90
9.26

10.42

RATES FOR VECTORS STORED IN CONSECUTIVE LOCATIONS

19.53

20.16

27.17

27.17

20.16

22.86

19.95

32

33.

4R

4R .

33.

41

313.

CYRER-205 VECTOR OPERATIONS

-89

8

07

07

18

.66

48

(in MFLOPS)
100 200

50.00 67.57
50.00 68.49
50.00 67.57
50.00 6R.49
78.09 112.30
78.09 112.30
49.99 67.5
63.55 91.44
50.67 66.95

Vector L~ngth
..300

83.

B3.

R3.

83.

152.

'52.

f3.

119.

83.

33
33
26
33
32
32
30 .,
38

68

1000 5000 10000 53000
91.24 98.04 99.01 99.80
91.58 98.14 99.01 99.80
91.24 98.04 °2.01 99.80
91.53 98.i4 99.01 99.80
172.86 193.80 196.85 199.20
172.86 193.80 196.85 199.20
91.09 98.09 99.01 99.80
132.92 146.20 148.00 148.66
91.46 98.04 99.04 99.73

V=vsy
v=vzv
=V+SZ*V
V=ViV+S
V=Viysy
V=S2V45=

V=VZV4V=Y

RATFS FOR VECTORS STORED IN CONSFCUTIVE LOCATIONS

CRAY-1 VECTOR OPERATIONS

= vector
S = scalar

(in MFLOPS)
Vector Length
10 25 S0 100 200 500 1000 5000 10000 50000
6.72 13.51 20.20 25.00 27.63 31.95 32.95 33.81 33.99 34.11
“.78 13.61 20.30 25.00 27.54 31.79 32.76 33.60 33.76 33.88
6.11 11.43 16.00 18.78 20.18 22.45 22.92 23.33 23.42 23.47
6.11 11.43 16.00 1R.73 20.10 22.36 22.R2 23.23 23.31 23.36
11.11 19.7¢ 26.40 30.25 32.06 35.01 35.61 36.12 36.23 36.29
it.19 21.39 30.53 35.719 3R._46 43.08 43.95 44 .80 44.97 45.08
10.1¢ 17.32 22.47 25.16 26.38 28.41 28.80 29.13 29.20 29.24
16.67 31.91 45.63 53.57 7.4R 64.58 65.97 67.18 67.45 67.62
15.20 25.00 32.88 136.47 38.06 41.15 41.67 42.12 42.23 62.30

TABLE 111

TIME FEQUIRED TO PERFORM A VECTOR OPERATION ON THE CYEER-205

TSTART_VU

Operation {in ns)
add yisVves Or vVizv+y 1020
mult v:i=v¥*s or v:=v*V 980

triad v:iz=v+s®tv or viss+vdtv 1580

T_EL

(in ns)

10
10
10

TABLE 1V

CRAY-1, CFT COMPILER VERSION 1.09 a
TIME PARAMETERS FCR VECTOR OPERATIONS
(in nanoseconds)

Operation TSTART OUT TSTART STRIP T_EL

V=V+S 900 275 25.0

=Sy 900 288 | 25.0

Vavsy 900 326 37.5 ,
vauy 900 339 37.5

vav 900 326 50.0 (min 37.5)
VaVhie, 900 442 37.5

VeVHYV 900 378 62.5 (nin 30.0)
VESHU+SHY 900 4h2 37.5

V=UHVAVHY 900 531 62.5

9see Eq. (2).

CYBER-205 VECTOR OPERATIONS

TABLE V

RATES FOR VECTORS STORED WITH A CONSTANT STR1DL®

Operation
V=V+S

V=§*V
V=V+V
V=Viy
V=ViS*\V
V=ViVv+s
U'=\VHVsv
V=§#\'+S*\V
VaVhy+\aey

9stride = 49

(in MFLOPS)

Vector Length

10 25 50 100 200 500
2.78 5.68 8.45 10.42 12.08 13.05
2.78 5.68 8.45 10.42 12.08 13.0.
2.16 4.40 6.25 7.72 8.87 9.48
2.16 4.40 6.25 7.72 8.87 9.48
3.73 7.91 11.68 14.79 17.12 18.77
3.73 7.91 11.68 14.79 17.12 18.77
2.98 6.07 8.74 10.68 12.17 12.95
4.63 9.97 14.76 19.33 22.94 25.29
3.41 6.94 10.03 12.33 14.18 15.30

.30
.79

TABLE V1
CRAY-1 VECTOR OPERATIONS a
RATES FOR VECTORS STORED WITH A CONSTANT STRIDE
(in MFLOPS)

Vector Length
0 25 50 100 200 500 1000

10 11.11 17.39 22.73 25.493 31.15 32.52
.03 11.05 17.32 22.60 25.72 30.96 32.3]
73 9.66 14.18 17.47 19.25 22.05 22.71
.65 9.52 14.03 17.32 19.11 21.93 22.60

Operation |
5
5
4
4
V=4 S*V 8.84 17.09 23.95 28.57 30.92 34.54 35.37
8
8
3
1

V=V+§

V=S*V
V=V+V
V=V*YV

V=ViV+S .87 18.35 27.30 33.47 36.82 42.37 43.29
.29 15.33 20.72 24.02 25.94 28.11 29.24
.04 27.03 40.40 49.2/ 54.19 63.42 65.36
54 21.74 29.92 34.58 36.60 40.65 41.41

V=VEVHV
V=S*V+S*Y 1
V=V#y+vay .]

35tride = 49

V=V(IND)+S
V(IND)=V=V
V(IND)=V(IND)+V=V

V=V+V=V(IND)

CYBER-205 VECTOR PERATIONS INVOLVING RANNDOM GATHERS AND SCATTERS
(in MFLOPS)

10

2.19
2.50
2.94

3.52

V = vector
S = scalar

25
4.73
5.30
6.19

7.62

7

8.

9

11

IKD = irdex vecter of random integers

50

.44

56

.69

.90

100

10.50

11.90

13.30

17.24

Vector Length

200 500
13.23 15.28
14.37 16.49
15.82 17.88
22.03 25.72

1900 5000 10000 50000
16.62 17.71 17.81 17.87
i7.27 17.81 18.12 18.29
18.81 19.50 19.76 19.90
27.65 29.80 30.24 30.33

e

TAELE VIII

CRAY-1 VECTDR OPFRATIONS INVOLVING RANDOM GATIIERS AND SCATTERS

(in MFLOPS)
Veclor Length .

Operation 1o _25 50 100 200 500 1000 5000 10000 50000
V=V(IND)+S 1.79 1.84 1.9C 1.52 1.94 1.95 1.95 1.95 1.95 1.95
V(IND)=V=V 2.19 2.5 2.49 2.53 2.56 2.57 2.58 2.58 2.58 2.58
V(IND)=V(IND)+V-V 3.43 3.70 3.80 3.85 3.88 3.89 3.90 3.90 3.90 3.90
V=V+V=V(IND) 2.93 3.12 3.19 3.23 3.25 3.25 3.25 3.26 3.26 3.26
V = vector

S = scalar

INDP = index vector of random integers

TABLE 1X

CYBER-203, CRAY-1 SCALAR OPERATIONS
RATES FOR OPERANDS STORED]IN CONSECUTIVE LOCATIONS
(in MFLOPS, Vector Length N = 50 000)

Cyber-203 Cray-l
BENCHFTN Compiler CFT, Version 1.08
Operation Not Optimized Optimized Not Optimized Optimized
V=V+§ 1.47 3.12 2.29 2.80
V=V*s 1.47 3.12 2.22 2.76
V=y+V 1.43 2.9 2.16 2.67
V=Y 1.43 2.94 2.10 2.57
V=V+§*\ 2.00 5.55 3.40 4.57
V=\"tr\'+ S 2.50 5.88 3.64 4,32
Va4V 1.96 5.26 3.27 4.32
\'=§*\+ S\ 2.73 7.89 4.44 b.as
S AN AR Y 2.63 7.89 4.14 H. 85

TABLE X

EXECUTION TIMES FOR STANDARD BENCHMARK PROGRAMS
CRAY-? AND CYBER-205
(CPU time in seconds)

Program Crry-1 Cyher-203 Cyber-205
Nomber Description Nonvectorized Vectorized Nonvectorized Vectorized
1 Integer Monte Carlo 75.1 S8.2 40.9 40.7
& Fast Fourier Transform (old) 30.5 21.8 54.1 37.2
4a Fast Fourier Transform |6] 11.3 6.4 12.4 8.7
5 Equatior of State Kernel 28.2 29.2 103.2 -

8 Vector Operations 36.9 19.0 41.3 23.9
11 Flasma Simulation Kernels [4] 177.3 104.2 a a
14 Katrix Operations 15.9 3.0 20.5 6.2
15 Linear Systems Solver (small) 65.3 16.3 R2.3 31.7
16 Linear System Solver (R00xR0N) 298.5 36.13 386.9 62.9
18 Veclor Dperations 20.3 2.4 30.6 1.1
21 Radiation Transport Monte Carls 4.8 4.8 6.2 6.2
22 Linear System Solver (new) 70.2 16.4 -- 31.2

aProgra- !1 was not run due to compiler problems.

TABLE X1

LINEAR SYSTEM SOLVER FORTRAN VERSIONS
EXECUTION TIMES FOR 360 SOLUTIONS
(in seconds)

Cyber/Cray
System Size Cyber-205 Cray-1 Speed KRatio
NXN LSS2 LSS5 LSS2 LSS5 LSS2 1.885
100 X 100 13.0 7.3 15.8 11.0 1.2 1.5
200 X 200 56.3 31.6 82.8 65.0 1.5 2.1
400 X 400 255.0 156.0 511.0 434.0 2.0 2.8

800 X 800 1270.0 §82.0 3449.0 3075.0

~
~J
[¥L

(%,)

TABLE X11

LINEAR SYSTEM SOLVER L1BRARY ROUTINES
EXECUTION TIMES FOR 300 SOLUTIONS
(in seconds)

System Size Cyber-205/Cray-1

NXN Cyber-205 Cray-1 Speed katio
100 X 100 5.9 2.9 0.48
200 X 200 26.5 16.8 0.66€
400 X 400 135.7 118.5 0.87

800 X 800 784.5 899.1 1.14

TABLE X111

SIMPLE EXECUTION TIMES
(in seconds)

Cyber-205/Cray-1

Mesh Size Cyber-205 Cray-1l Spced Ratio
NXN_ SIMP SIMP4 SIMP SIMP4/SIMP
32 X 32 8.2 6.3 3.2 0.50
64 X 64 31.8 22.7 12.0 0.53

96 X 96 70.6 49.0 27.1 0.56

Vector Length
2560
640
160
64

TABLE X1V

2.33
2.49
2.83
4.06

CYBER-205 TIMINGS FOR P1C KERNELS
(in microseconds/particle)
PARMVE

PARMOV

7.53
7.89
8.36
11.54

PARMVR
9.02
9.46

10.02

13.95

CRAY-1

CAL
Vector Fortran

Scalar

TABLE XV

TIMINGS FOR PARTICLE-IN-CELL KERNELS

(in microseconds/particle)

PARMVE
1.74
5.5
8.0

PARMOV
4.35

PARMVR
4.77
11.00
26.00

TABLE XVI]

RATIO OF CYBER-205 TO CRAY-1 SPEED
FOR OPTIMIZED PIC KERNELS

PARMVE PARMOV PARMVK
0.75 0.58 0.53

